CHARGE BREEDING TECHNIQUES

RNB6
ARGONNE
22-26TH SEPTEMBER 2003

HISTORY

- * STRIPPERS AROUND SINCE EVER
- * ECRIS CB STUDIES 1993

(ISN GRENOBLE FOR PIAFE)

- * EBIS INJECTION TESTS 1994 (STOCKHOLM FOR REX)
- * REX-ISOLDE RIB 2001

OUTLINE OF TALK

- I. MOTIVATION
- 2. CB TECHNIQUES & RESULTS
 STRIPPER

EBIS

ECRIS

- 3. FUTURE DEVELOPMENT
- 4. CONCLUSIONS

MOTIVATION

PHYSICS CASE FOR PHYSICIST TO MOTIVATE

Pulsed LINACCW LINAC

ENERGY REQUEST

- * FEW MeV/U TO REACH AND PASS COULOMB BARRIER
- * GeV FOR BETA BEAMS
- -> NEED FOR POST ACCELERATION OF ISOL BEAMS

AND

ENERGY ∝

Q IN LINAC

Q² IN CYCLOTRON

MASS-TO-CHARGE RATIO (A/Q) < 1/9

THE IDEA

Charge breed (I $^+ \rightarrow N^+$) Low-energy ions

SIMPLICITY(?)

Efficiency(?)

COMPACTNESS

(SHORTER/SIMPLER/CHEAPER LINAC)

BRUTE FORCE

HOW LONG WOULD A I+ LINAC BE?

- * W_{nucl} [MeV/u]=E_{acceleration} [V/m] * q/A [e/u] * L [m]
- * $E_{ACC} \sim 5 \text{ MV/m}$ ACCELERATION FIELD
- * LIMITED TO q/A < 1/30 OR 1/60

LIMITS

* PRICE ESTIMATE I+ ACC - PURE SCALING

FINAL ENERGY	MASS	LENGTH	PRICE
(MEV/U)	(A)	(M)	(MUSD)
5	100	100	50(!)
10	100	200	100(!)

CERN proton LINAC2

- * Price 38 MCHF
- * Field gradient linac 1.5 2 MV/m
- * q/A=1, 50 MeV, 34 m, 3.3 m RFQ

CLASSIC CONCEPT - STRIPPING

- SIMPLE METHOD AND FAST (µS ISOTOPES)
- ⊗ NEEDS PRE-ACCELERATION

IN GAS STRIPPING 8 TO 20 KEV/U IN FOIL STRIPPING ~0.5 MEV/U

- NO MACRO-BUNCHING CAPABILITY

EXAMPLE - SPES SCENARIO			
BUNCHING EFFICIENCY 65%			
GAS STRIPPING AT 8 KEV/U 40%			
STRIPPING FOIL AT 500 KEV/U 20%			
IN TOTAL (SINGLE CHARGE ACC OF 132SN) 4%			

MULTI-CHARGE STATE ACCELERATION

- * ACCELERATE MULTIPLE Q AFTER THE STRIPPER
- * $\Delta q/q$ of ~20% can be accepted

MCA and overall stripping efficiency (RIA)

RIA PROJECT

THE EBIS CHARGE BREEDER

- * PRODUCES MULTIPLY CHARGED IONS
- * IONS ARE TRAPPED IN A MAGNETO-ELECTROSTATIC TRAP
- * IONISATION BY e⁻ BOMBARDMENT FROM AN MONO-ENERGETIC e⁻ BEAM

ELECTRON BEAM ION SOURCE

CHARGE DEVELOPMENT FOR STEPWISE IONISATION

ionisation

extraction

- * ~25% IN ONE CHARGE STATE
- * MORE NEAR CLOSED SHELLS
- * VARY $T_{BREEDING} \rightarrow VARY CSD$

EBIS CHARACTERISTICS I

BREEDING CAPACITY

$$C = \frac{1.05 \cdot 10^{13} \cdot I_e L}{\sqrt{U_e}} k$$

C = number of elementary charges

I_e and U_e = e⁻ beam current and energy

k = neutralization factor

L = trap length

REAL VALUES

 $I_{e} = 0.5 A$

 $U_{\rm e} = 5\,000\,{\rm eV}$

L = 0.8 m

k = 50%

~3·10¹⁰ charges

CHARGE STATE

$$j_e \tau = \sum_{q=1}^{k-1} \frac{e}{\sigma_{q \to q+1}}$$

Typical ionization times (A/q<4.5) (Calculated REXEBIS values)

⁵²Ca¹²⁺ 20 ms

⁷⁰Ni¹⁶⁺ 22 ms

⁷⁸Zn¹⁸⁺ 30 ms

⁸⁶Se²⁰⁺ 40 ms

⁹⁴Kr²¹⁺ 50 ms

¹⁰²Rb²³⁺ 60 ms

¹³⁴Cd³⁰⁺ 120 ms

¹⁴⁴Xe³²⁺ 150 ms

¹⁴⁸Ba³³⁺ 160 ms

- **SHORT BREEDING TIME**
- © ELEMENT INDEPENDENT

EBIS CHARACTERISTICS II

TIME STRUCTURE

- \otimes Bunched injected beam <50 μs
- © BUNCHED EXTRACTED BEAM (10 μs to several ms)
- ⊕ ENERGY SPREAD < 50*q EV
 </p>

EMITTANCE / ACCEPTANCE

- © EMITTANCE
 - $10 \pi \cdot MM \cdot MRAD (95\% AT 20 KV)$
- \odot SMALL EMITTANCE => SMALL ACCEPTANCE ~10 π·MM·MRAD (95% AT 60 KV)
- * DEPENDENT ON:

BREEDING TIME, NEUTRALIZATION ETC

PREPARATORY PENNING TRAP

Accumulation

Cooling

Ejection

PRINCIPLE

- * CONTINUOUS INJECTION
- * BUNCHING (10-20 µS BUNCH EXTRACTED)
- * Cooling (10-20 Ms)

RESULTS REXTRAP

(HE), LI,...,U EFFICIENCY 45 % EMITTANCE >10 π MM MRAD @ 30 KEV

SPACE CHARGE EFFECTS WITH SIDEBAND COOLING OF MORE THAN 10⁵ IONS/PULSE
 => 10⁷ IONS/S

THE LARGE REXTRAP AT ISOLDE

IN PRESENT EBIS CB CONCEPT,
TRAP IS THE LIMITATION (108 IONS/S)

REX-ISOLDE BUNCHING/COOLING/BREEDING

- * T_{COOLING}, T_{BREEDING} TIMES < 20 MS EACH
- * REPETITION RATE UP TO 100 HZ
- * $Q/A \sim 1/4.5$
- * MASS SEPARATOR (ACHROMATIC) RESOLUTION > 100
- © RAMP EBIS PLATFORM VOLTAGE -> DECOUPLE ISOL PART AND LINAC

1⁺ ions from ISOLDE

EFFICIENCIES (DESIGN VALUES)

• trap bunching: 90%

• beam transport: >85%

• EBIS injection: >50%

• EBIS $Q_i/\Sigma Q_i$: 30%

 $\rightarrow \Sigma_{\text{eff}}$ 12% in one charge state

PRICE FOR EBIS AND TRAP ~1.1 MUSD IN TOTAL

EXTRACTION MASS SPECTRUM I

LOW INTENSITY BEAMS

- * EBIS IS UHV (LOW RESIDUAL GAS, ~10-11 MBAR)
- Needs UHV conditions for OPERATION

EXAMPLE OF BEAM CONTAMINATION - LI RUN

- * 9Li²⁺, run at A/q=4.5
- * Contamination of ¹⁸O⁴⁺ rest-gas of 1·10⁴ ions/s

- * Time gate =>
 - 15 times higher Li than O

EXTRACTION MASS SPECTRUM |

VARY BREEDING TIME

- * HIGHER INTENSITIES > 100 pA INJ.
- * LOWER EFFICIENCY BUT OVERALL MORE PARTICLES THROUGH

* STRONG NE CONTAMINATION FROM TRAP

BREEDING EFFICIENCY

NB! PENNING TRAP
NOT INCLUDED!

EFFICIENCIES

BEAM TRANSPORT + EBIS + MASS ANALYZER

CB IN STABLE	REXEBIS RADIOACTIVE
7Lj2+	9 Lj 2+
²³ Na ⁷⁺	²⁴⁻²⁹ Na ⁷⁺
²⁷ A 8+	
²⁴ Mg ⁸⁺	³⁰ Mg ⁸⁺
39 K 10+	
	¹³⁸ Ba ²⁶⁺
¹³³ Cs ³²⁺	
	¹⁵³ Sm ²⁸⁺

- **[☉] INDEPENDENT OF MASS**
- \odot CAN IN PRINCIPLE REACH ~30% (N⁷⁺ 30% & AR¹⁴⁺ 9.4% IN SACLAY AND STOCKHOLM)

EBIS DRAWBACKS AS CB

- © CATHODE LIMITED LIFETIME
- **⊗** COMPLICATED

THE ECRIS CHARGE BREEDER

ELECTRON CYCLOTRON RESONANCE ION SOURCE

PRINCIPLE

- * INJECT VERY SLOW IONS THROUGH A PLASMA OF HOT e
- * ELECTRON ENERGY A FEW KEV
- * DENSITY <1.1013 S/CM3
- * IONIC CONFINEMENT $\tau_1 \sim 10$ MS TO A FEW 100 MS

ECRIS AS CHARGE BREEDER

- ☺ I⁺ INJECTION CONTINUOUS OR BUNCHED
- Not so complex
- * CHARGE-TO-MASS RATIO OF <1/6

PRICE FOR PHOENIX AND RF GENERATOR ~300 KUSD

1+ source

- © ECRIS MAGNETS ON GROUND =>
 AVOID HV PLATFORM WITH 50 KW
- ⊗ INJECTION = EXTRACTION VOLTAGE =>
 - * VARY I + SOURCE POTENTIAL
 - * OR USE A VE-RFQ

ECRIS CHARACTERISTICS I

CONFINEMENT TIME

- * 10 MS PER CHARGE STATE
- * Breeding time ≠ Confinement time
- CHARGE TUNING WITH

RF POWER

MAGNETIC FIELD,

SUPPORT GAS PRESSURE

INTENSITY VS EFFICIENCY

- No PROBLEM WITH 10¹² IONS/S
- © ECRIS CAN ACCEPT >μA
- No efficiency decrease
 When decreasing the current

ECRIS CHARACTERISTICS II

BEAM ENERGIES

* EXTRACTED ENERGY SPREAD ~ I V * q

ACCEPTANCE / EMITTANCE

EXTRACTION MASS SPECTRUM

- * GLOBAL CAPTURE ~50% POSSIBLE (EXTRACTION IN TWO DIRECTIONS)
- * CSD BROAD DUE TO CONTINUOUS INJECTION

INJECTED BEAM: In⁺ 520 nA, 20 KeV RF power @ I4 GHz: 340 W

TOTAL HV CURRENT: 1.1 mA

*
$$\eta(1^+ \rightarrow 18^+) = 6\%$$

* GLOBAL CAPTURE = 45%

RESIDUAL GAS BACKGROUND

- □ Total extracted current I-2 MA
- * WORKING PRESSURE = | TO | 10.10.6 MBAR
- * RESIDUAL GAS PEAKS >> RADIOACTIVE ATOMS

* Non UHV PHOENIX BOOSTER SPECTRUM, A/q=0-70

NOISE LEVEL IN BETWEEN RESIDUAL GAS PEAKS?

* KEK-JAERI HAS 10 NA IN 6<A/q<7

RESIDUAL GAS SUPPRESSION

- * WIEN FILTER
- * BAKEABLE UHV DEVICES?
- * MONOISOTOPIC BUFFER GAS
- * NEGs

PRODUCED ELEMENTS

- © FAST SETUP: DIFFERENT
 STABLE BEAM WITHIN AN HOUR
- * EASIEST

 NOBLE GASES

 HEAVIER ELEMENTS

ELEMENTS WHICH HAVE BEEN EXPERIMENTALLY STUDIED WITH THE ISN-ECRIS CHARGE BREEDER

- * "DAILY PRODUCTION" OF A/q \approx 7
- * ELEMENTS PRODUCED IN ~10 DAYS:

¹¹⁵In, ¹⁰⁹Ag, ⁶⁴Zn, ¹²⁰Sn, ⁸⁸Sr, ⁶⁹Ga, ⁹⁰Y, ³⁹K, ⁸⁵Rb, ⁵⁹Co

* CHARGE BREEDING EFFICIENCY OF AT LEAST 3%

PULSED EXTRACTION

- * EXTRACTION CW OR AFTERGLOW PULSED
- * AFTERGLOW METHOD = SWITCH OFF RF
- * PULSED EXTRACTION FOR SYNCHROTRONS AND PULSED LINACS

for charge bred Pb²⁷⁺

CB WITH AFTERGLOW EXTRACTION

- * BEAM IN RBI+
- * BEAM OUT RB¹⁵⁺
 6·10¹⁰ CHARGES/PULSE
 3·10¹¹ CHARGES/S
 - 2.2 % EFFICIENCY

ECRIS CBs around the world

COMPARISON ECRIS AND REXEBIS AT ISOLDE

- * FROM 10 TO 18 GHZ (28 GHZ POSSIBLE)
- * MODULAR AXIAL B-FIELD

RESULTS FROM KEK-JAERI

- * 18 GHz ECRIS, A/Q<7
- * 6.5% BREEDING EFFICIENCY XE+ TO XE²⁰⁺

* ISAC (TRIUMF) HAS ALSO A PHOENIX UNDER COMMISSIONING

FUTURE EBIS

WHAT TO IMPROVE ON EBIS?

- I. SHORTENING OF THE TBREEDING
- 2. CONTINUOUS INJECTION —
- 3. INCREASED CHARGE CAPACITY

- * REPETITION RATE 200 HZ
- * NO LIFE-TIME LOSSES AT
- * HIGH CAPACITY

Continuous injection / Accu EBIS with RFQ cooler

Au³³⁺ A/q~6

40 ms breeding

O1 x b) esind/seb 1.0

RHIC requirement scaled to EBTS trap length

Electron Current (A)

EBIS test stand

ADVANCED CHARGE BREEDING

TRENDS IN ECRIS DEVELOPMENT

- * SHORTER EXTRACTION PULSE
- * SHORTER CONFINEMENT TIME MODULAR ECRIS

PHOENIX 28 GHz high current extraction (Lead)

Shorter and higher afterglow

* Higher charge state / larger capacity / better I+ capture Higher RF frequency $n_e \propto \omega_{RF}^2 \; \text{(scaling rule)} \\ B_{\text{resonance}} \sim \omega_{RF} \; \text{-> high B-field and sc solenoids}$

Optical coupling of the UHF power:

* < 100 KW / 1 ms each 20 s

* ω_{RF} = 37.5 *GHz*

Very simple magnetic system

IAP Nizhny Novgorod + LPSC

 $n_e \sim 5.10^{13} \text{ cm}^{-3}$

BREEDER RING

OPERATION EFFICIENCY

 I_{∞} = na/[1- μ (1-a)] NB! Decay n=extraction eff. losses a=ionisation eff. excluded. μ =ring transport eff.

Example: n=0.9, a=0.8, $\mu=0.9 => 0.87$

Large dispersive magnetic separator/merger

PROBLEMS

- * ADDED DELAY TIME
- * TRANSPORT LOSSES
- * EXTRACTION/INJECTION LOSSES

Idea from E. A. Lamzin, Russia Pursued by A. Villari and GANIL

	1		Stripper	EBIS	ECRIS
irence		Simplicity	3, passive element	1, complicated (SC, UHV, e-gun)	2, medium (RF, beam tuning)
		Beam properties in	3, no special requirements	1, bunched, small acceptance	2, CW, medium acceptance
		Beam properties out	1, emittance blow-up	3, us or ms bunch, small emittance	2, CW or bunched
ב ב ב		Low intensities	3, no contamination	2, some 100 fA	1, high rest-gas level
5 5		Rapidity	3, instant, us isotopes	2, 10 ms	1, a few 10 ms
weight function according personal preference		CSD	3, narrow, high charge state	3, narrow, high charge state	2, broad CSD, moderate charge
		CSD tuning	1, not tunable	3, change time	2, many parameters
		Machine contamination	2, foil change	1, multiple parts	2, change plasma liner
uncti		Storage time	1, non existing	3, up to s	2, ~100 ms
		Beam capacity	3, very high, 100 uA	1, limited to nA	2, several uA
D >		Energy spread	1, ∆W/W~1‰	2, a few 10 eV*q	3, some eV*q
		Efficiency	2, a few %	2, a few %	2, a few %
		Life-time	2, foil breakage, 50 mC/cm ²	1, electron cathode	3, klystron lifetime
		Price	1 high, (incl. pre-acc)	2 ~1 MUSD (trap +EBIS)	3, ~0.3 MUSD

CONCLUSIONS

GUIDELINES

- * OBTAINED CB EFFICIENCIES IN 5% REGION
- * EBIS FOR LOW INTENSITIES
- * ECRIS-STRIPPER COMBINATION FOR HIGH INTENSITIES

BREAKING POINT I NA

Transmission efficiencies for ECR and stripping schemes

THREE CHOICES - THREE VIRTUES

Stripper

Fast but expensive (pre-acc. LINAC)

ECRIS

Large capacity but dirty

EBIS

Electrical car

Clean but low capacity

* FUTURE INTERESTING CONCEPTS

* ADVANCED CHARGE BREEDING PROPOSAL

Acknowledgement

- O. Kester, LMU F. Ames and B. Wolf, CERN
- T. Lamy and P. Sortais, ISN Grenoble
- T. Fritioff and C. Bartman, CERN and Daresbury